Maria G. Salas Fernandez

Associate Professor

Office: 1126E AGRON
Phone: (515) 294-9563

My research program is devoted to develop superior sorghum lines to be used as lignocellulosic feedstock for biofuel production and to discover genes/alleles associated with traits that confer superior biomass yield through the use of molecular and genomic technologies. The genetic knowledge generated in my research program will be applied to sorghum but could be utilized for the genetic improvement of other crops as well.

Sorghum was selected based on the genotypic and phenotypic variation of the species, and the high productivity potential as a biofuel source. Sorghum can be used to produce ethanol from grain, stover, sugars accumulated in the stems (sweet sorghums) or as a dedicated lignocellulosic biomass crop (particularly photoperiod-sensitive types). The sorghum breeding program at ISU includes all sorghum types and uses described above, prioritizing photoperiod-sensitive materials.

Publication list

Zhao, J., M.B. Mantilla Perez, J. Hu, and M.G. Salas Fernandez. 2015. Genome-wide association study for nine plant architecture traits in Sorghum bicolor. The Plant Genome (in Press). doi: 10.3835/plantgenome2015.06.0044.

Li, L., W. Zheng, Y. Zhu, H. Ye, B. Tang, Z.W. Arendsee, D. Jones, R. Li, D. Ortiz, X. Zhao, C. Du, D. Nettleton, M.P. Scott, M.G. Salas-Fernandez, Y. Yin, and E.S. Wurtele. 2015. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc. Natl. Acad. Sci. USA 112(47):14734-14739.

Salas Fernandez, M.G., K. Strand, M. Hamblin, M. Westgate, E. Heaton, and S. Kresovich. 2015. Genetic analysis and phenotypic characterization of leaf photosynthesis capacity in a sorghum diversity panel. Genet. Resour. Crop Evol. 62:939-950.

Mantilla Perez, M.B., J. Zhao, Y. Yin, J. Hu, and M.G. Salas Fernandez. 2014. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor. Appl. Genet. 127 (12): 2645-2662.

Salas Fernandez, M.G., G. Schoenbaum, and S. Goggi. 2014. Novel germplasm and screening methods for early cold tolerance in sorghum. Crop Sci. 54(6): 2631-2638.

Salas Fernandez, M.G
., J. Okeno, E. Mutegi, A. Fessehaie and S. Chalfant. 2014. Assessment of genetic diversity among sorghum landraces and their wild/weedy relatives in western Kenya using simple sequence repeat (SSR) markers. Conserv. Genet. 15:1269-1280.

Salas Fernandez, M.G.
(2011). Sorghum: an alternative biomass feedstock for ethanol production in the Midwest. Aspects of Applied Biology 112: 93-98. Biomass and Energy Crops IV Conference. Urbana/Champaign, Illinois, USA.

Yan, J., Bermudez Kandianis, C., Harjes, C.E., Bai, L., Kim, E., Yang, X., Skinner, D., Fu, Z., Mitchell, S., Qing, L., Salas Fernandez, M.G., Zaharieva, M., Babu, R., Fu, Y., Palacios, N., Li, J., Dellapenna, D., Brutnell, T., Buckler, E.S., Warburton, M.L., Rocheford, T. (2010). Rare Genetic Variation at CrtR-B1 Increases ß-carotene in Maize Grain. Nature Genetics 42(4): 322-327.

Salas Fernandez, M.G.
, P.W. Becraft, Y. Yin and T. Lübberstedt. (2009). From dwarves to giants: plant height manipulation for biomass yield. Trends Plant Sci. 14 (8): 454-461.

Salas Fernandez, M.G.
, I. Kapran, S. Souley, M. Abdou, I. H. Maiga, C. Acharya, M. T. Hamblin, and S. Kresovich. (2009). Collection and characterization of yellow endosperm sorghums from West Africa for biofortification. Genet. Resour. Crop Evol. 56: 991-1000.

Salas Fernandez, M.G.
, M.T. Hamblin, L. Li, W.L. Rooney, M.R. Tuinstra, and S. Kresovich. 2008. QTL analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci. 48:1732-1743.

Hamblin, M.T., M.G. Salas Fernandez, M.R. Tuinstra, W.L. Rooney, and S. Kresovich 2007. Sequence variation at candidate loci in the starch metabolism pathway in Sorghum bicolor: prospects for linkage disequilibrium mapping. The Plant Genome S2: S125-S134.

Hamblin, M.T., M.G. Salas Fernandez, A.M. Casa, S.E. Mitchell, A.H. Paterson, and S. Kresovich. 2005. Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171: 1247-1256.

Salas, M.G.
, S. H. Park, M. Srivatanakul, and R.H. Smith. 2001. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep. 20:701-705.

Srivatanakul, M., S.H. Park, M.G. Salas, and R.H. Smith. 2001. Transformation parameters enhancing T-DNA expression in kenaf (Hibiscus cannabinus). J. Plant Physiol. 158:255-260.

Park, S.H., B.M. Lee, M.G. Salas, M. Srivatanakul, and R.H. Smith. 2000. Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor. Appl. Genet. 101:1015-1020.

Srivatanakul, M., S.H. Park, J.R. Sanders, M.G. Salas, and R.H. Smith. 2000. Multiple shoot regeneration of kenaf (Hibiscus cannabinus L.) from a shoot apex culture system. Plant Cell Reports 19:1165-1170.

Srivatanakul, M., S.H. Park, M.G. Salas, and R.H. Smith. 2000. Additional virulence genes influence transgene expression: transgene copy number, integration pattern and expression. J. Plant Physiol. 157:685-690.

Zapata, C., M. Srivatanakul, S.H. Park, B.M. Lee, M.G. Salas, and R.H. Smith. 1999. Improvements in shoot apex regeneration of two fiber crops: cotton and kenaf. Plant Cell, Tissue and Organ Culture 56: 185-191.