
❖ The promise of precision agriculture has not been fully met because, in part, the

challenges of obtaining the needed information at fine enough resolution. Once

fully realized, precision agriculture offers benefits for crop yield, input use

efficiency, and environmental sustainability. Soil fertility maps are essential for

informing soil fertility management. However, current methods for mapping soil

fertility are not efficient enough to produce the quality of maps needed to fully

support future variable rate technologies.

❖ Digital soil mapping (DSM) is an attractive option to manage site-specific soil

fertility thanks to its capabilities for creating highly accurate and reliable soil maps

with fine spatial resolution (Iticha and Takele, 2019) (Figure 1).

❖ Growing availability of environmental covariates due to advancements in remote

sensing (RS) technologies is making it challenging to select and focus on the most

important covariates. Using only relevant covariates in ML models is crucial where

the curse of dimensionality can negatively impact the modeling accuracy and

reliability with small datasets (Figure 2).

Figure 2. Curse of dimensionality

indicates that “the quantity of

samples needed to estimate an

arbitrary function with a given level

of accuracy grows exponentially with

respect to the quantity of potential

covariates (i.e., dimensionality) of the

function” (Bellman, 1957).
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Introduction

Objectives
❖ Evaluate the response of model performance to feature selection (FS) under

different ML algorithms for the spatial modelling of five dynamic soil fertility

properties.

❖ Investigate the effect of sample quantity (i.e., the original sample sets, which were

based on separate fields and all fields combined) for spatial modeling.

❖ Study was conducted in ten central Iowa fields (Figure 4). A total of 992 soil

samples collected from a depth of 0–15 cm between 2018 and 2020 were used in

this study.

❖ Samples were analyzed for nitrate-nitrogen (NO3
−) by flow injection method, soil-

test phosphorus (P) by Bray-1, soil-test potassium (K) by neutral ammonium

acetate method, buffer pH (BpH), and soil organic matter (SOM) by loss on

ignition (LOI). All soil samples were collected using a grid sampling design.

❖ A total of 1,049 environmental variables were used as potential covariates. The

covariates were from digital terrain attributes based on 3 m and 10 m digital

elevation models (DEMs) and time-series satellite (Sentinel-2) & aerial imagery

(NAIP: National Agriculture Imagery Program) (Figure 3).

Materials & Methods

Results

Conclusions

❖ FS improved model robustness (RR) and prediction accuracy of soil fertility maps. Wrapper and

embedded FS strategies with tree-based ML produced the optimal models/maps.

❖ IV-CCC results were higher for maps based on more samples in a sample set, but this relationship

was weakly correlated for each of the FS methods.

❖ Our methods can significantly improve the reliability and accuracy of soil fertility mapping, which

can help farmers to optimize their crop yield and input use efficiency.

Figure 1. Digital soil mapping (DSM) refers to the creation of soil maps based on statistical learning

algorithms (e.g., machine learning (ML)). These algorithms are used to identify the relationships between

observed soil data and environmental covariates at soil sampling locations. Then, these relationships are used

to make predictions at unsampled locations to create a soil map.

Soil Observations

Environmental Covariates

Figure 4. Map of the study fields (A–J). Size of the fields ranged from 0.4 ha to 13.1 ha. Soil samples were

collected from these fields with varying grid-sample spacings (5 m to 37.5 m grids). Figure 6. Comparisons of models without FS (No-FS) and with optimal

FS for SOM, K, NO3
−, P and BpH. Sample sets are labeled and ordered

by the quantity of samples in the set. The first three bars represent the

evaluation metrics for the models without FS, while the latter three bars

are for the models with optimal FS methods. The models from both

categories are obtained by applying the evaluation procedure (Figure 5).

Figure 5. Overall workflow and evaluation process for selecting optimal models from the combinations of FS

and ML algorithms tested. This process was applied to each sample set, which included five soil properties

for ten individual fields and all fields combined. The reason for using three different evaluation steps was to

sequentially evaluate characteristics of model quality. Step 1 tested the models’dependence on locations used

for model training with cross-validation-R2 (CV-R2)). Step 2 tested the stability of results when different

training sets were used with the robustness ratio (RR): CV-R2/ goodness-of-fit). Finally, step 3 tested the

accuracy of the predictions in the resultant soil map with an independently held-out sample set (20% of all

samples) with Lin’s concordance correlation coefficient (CCC)). For each of these metrics, higher values

indicate better models and resultant maps.
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Figure 3. Operations to create input datasets (i.e., soil data and environmental covariates). 1) creation of soil

data. 2) downloading spectral bands and their corresponding vegetation indices based on time-series satellite

and aerial imagery products using Google Earth Engine platform. 3) creation of digital terrain attributes with

varying analysis scales in GRASS GIS based on 3 m and 10 m DEMs from Iowa's LiDAR program (2010).
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Figure 7. Examples of maps created by the optimal models built from covariate stacks with (a) No-FS and (b) FS. Applying FS generally led to less

smooth maps compared to the maps created with full covariate stacks. However, performance across all metrics usually increased for the maps

produced with FS. Maps shown reflect soil fertility levels present on the sampling dates: NO3
− for field F (8 June 2019), P for field C (12 July 2019),

K for field H (25 June 2018), BpH for field A (29 June 2020), and SOM for field D (16 July 2019).

(a) Maps created without FS       (b) Maps created with optimal FS
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