
DEVELOPING GENETIC MAPS  
 We can determine θs for pairs of genes or loci. Next question is how to place them in 
a genetic map; i.e., grouping loci into linkage groups and ordering sets of 3 or more loci. 
1. Grouping loci into linkage groups 
The question beyond determining linkage of any two loci is the ordering of the loci into a 
reasonable genetic map.  Ordering can be done using the MLE of θ, determined via a 
two-point evaluation described before, in conjunction with the lod score (Z) or the 
probability value of linkage.  Commonly used criteria, e.g., in the computer program 
MAPMAKER (Lander et al., 1987), are as follows: 
 
 if {θ ≤   0.40 and Z≥  3} then loci i and j are grouped into the same linkage group. 
 
Often, linkage groups are determined more iteratively; that is, after assembling groups 
based on the above criteria, the data can be reanalyzed with more stringent parameters, 
e.g. {θ ≤   0.30 and Z≥  5}.  Groups staying together over a range of parameters are more 
likely to be truly linked. 
 
2. Multiple locus ordering 
Three loci can be ordered rather simplistically by looking at the two-locus recombination 
frequencies.  Loci further apart will have larger recombination values.  
 
e.g.,  $θ $ .θac = 022 $ .θbc = 030.ab = 010

  

We might expect that the order is B-A-C, because B and C have the largest 
recombination fraction and define the ends; A fits in between. 
 
The maximum likelihood approach, which is generally applicable to more than two loci, 
uses two-point recombination data and is calculated as follows (ignoring interference): 
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where  x = a linear order of l  loci, e.g.1,2,...,l-1, l 

   aiaj = pairs of loci, e.g. a1a2 represents the first pair in the order (x) being evaluated; in 
this case, a1a2 would represent loci 1 and 2.  If the order we were evaluating 
was 3,4, ...., l, then a1a2 would represent loci 3 and 4. 

  j = i +1 
  nij = number of informative sample sizes for locus combination i and j 
   
A likelihood is computed for each possible order; the one with the highest likelihood (i.e., 
closest to zero) is selected as the most likely order. 
 e.g. for our example above:   
 lnL (a-b-c) = [100(0.1 ln 0.1 + 0.9 ln 0.9)] + [100(0.3 ln 0.3 + 0.7 ln 0.7)] = -93.60 
 lnL (b-a-c) = - 87.20 
 lnL (a-c-b) = -113.78 
Thus, order b-a-c is more likely than either of the other two orders.  
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MAPMAKER (Lander et al., 1987) is a computer program for multipoint analysis of any 
number of loci necessary for the development of an accurate genetic map. It computes the 
maximum likelihood map order for any number of loci. The correct map-order is the one 
that gives the lowest log-likelihood value. 
 
 
3. Multilocus genetic maps (Lander and Green, 1987)(Liu, 1998) 
 
Once θ is found, a new maximum likelihood estimation needs to be conducted to find the 
multilocus recombination values.   
 
The basic problem, and the reason that two-locus recombinations are not the best estimate 
of a multilocus map, is that we cannot (in most cases) simply count recombinants 
between any two loci.   
 

For example, take the case of two codominant RFLP markers.  Assume the parents 
are homozygous AB and ab.  The two homologues in the F1 will be AB/ab.  We can 
then classify nine classes in the F2.  However, we won’t be able to distinguish 
between the two types of double heterozygotes: double recombinant Ab/aB and the 
non-recombinant AB/ab.    

 
If this is the case, then we can’t tell the whether a recombination between A and C 
occurred in AB or in BC, but we can calculate expectations based on the 2-locus 
recombination ratios. 
 
Thus, we need to do a genetic reconstruction to estimate the number of recombinants 
within the doubly heterozygous class, which can be done more effectively by looking at 
more than two loci.  The best method to arrive at the MLE for each interval’s 
recombination value is the EM algorithm.  Newton-Raphson iterations can also be used, 
but for large numbers of loci, they are prohibitive in computation time. 
 
Take three loci, A–B–C, which have been found to be in this order. 
 
If the true recombination value of AB is θ and the true value of BC is θ2, then we can use 
maximum likelihood to estimate the true parameters from the observed two-locus 
recombinations.   
The general idea is this: 
 
1. Take an initial estimate, θold = (θ1 , θ2, . . ., θl-1 ), where l is the number of loci. 

  2. (E step) Using θold as if it were the true recombination fraction (i.e. each interval’s 
recombination fraction is correct), compute the expected number of recombinant 
meioses for each interval. 

  3. (M step) Using this expected value as if it were true, compute the MLE θnew for the 
recombination fraction. 

4. Iterate E and M until θnew ≅ θold (i.e. the likelihood converges to a maximum). 
 



Developing Genetic Maps  3 

In our example: 
 

  1. The initial (“old”) estimates are θAB and θBC, for recombination between AB and BC 
respectively. 

2. The expectation step: 
   Our first estimate of the true number of recombinations (t) in the intervals AB and 

BC.  For interval AB: 
 
  tAB = RAB + a1RAC + a2(NAC-RAC) 
 

where  RAB is the number of recombinants observed 
  NAC is the number of meioses observed 
  a1 is the probability that a recombination between A and C occurred in AB: 
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This is the probability of recombination in AB times the lack of recombination in BC 
(that is the only way to have a recombination in AB and also in AC), divided by all the 
recombinations in AC, namely the probability of recombination in AB times the lack of 
recombination in BC plus the probability of a  lack of recombination in AB times the 
probability of a recombination in BC. 

 
a2 is the probability that a recombination occurred in AB if AC is non-recombinant: 
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This is the probability of recombination in AB multiplied by the probability of 
recombination in BC (the only way to have a recombination in AB and have no apparent 
recombination in AC), divided by the probability of recombination in AB times the 
probability of recombination in BC plus the probability of no recombination in AB times 
the probability of no recombination in BC. 
 
Thus, “tAB” includes two components:  
 1. The number of recombinants that we observed between A and B = RAB 
 2. The number of recombinants that we expect to observe between A and B, based 

on an estimate derived from the number of recombinants seen in AC and the 
computed two point recombination fractions θAB and θBC. 

 
If the observed number equals the expected number, then our two-point estimates are 
the true values.  However, if some recombinants are “hiding” in the double 
heterozygous class, as they almost certainly are, then we will observe a different 
number than the expectations based on the AC data. 

 
 and  tBC =RBC + (1-a1)RAC + a2(NAC-RAC) 
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3. Maximization step: 
  with our new expectations for recombinations (t1 and t2), we can develop new 

recombination fractions: 
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We divide by the sum of AB observations and AC observations (which are equal if 
we have no missing data), since we included both our observed AB and our expected 
AB recombinants in “tAB.” 

 
 
4.  Iterate steps 2 and 3 until the new value of θ is approximately equal to the value from 

the previous step. 
 
Example: 
Say we have three loci, A-B-C, in that order.  We want to construct the multilocus map 
for these markers.   
 
Say we observe 10, 10, and 18 recombinants between AB, BC, and AC, respectively, in a 
population of 100 individuals.   
 
Now, pretend our estimates of recombination between AB is 20% and between BC is 
10%. 
 
Then, we need to find the true value of  recombination between AB. 
 
 t(AB) = 10 + (0.69)(18) + (0.027)(82) = 24.64 
 
 Therefore, the new estimate of θ for the interval AB = (24.64)/(100+100) = 0.123 
 
 Iterating gives new estimates of recombination for AB of ~11% and BC of ~9%. 
 
This can be extended to more loci in a similar manner, by working down the linkage 
group, and including all data in the expression. 
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MAP DISTANCE 
Assuming no interference for the moment: 
 
 Call the recombination fraction between  AB = θ12 BC = θ23  AC = θ13 
 
 θ13 = [(θ12 - θ12θ23) + (θ23 - θ23θ12)]  =  θ12 + θ23 - 2θ12θ23   [Trow’s formula, 1913] 
 

The recombination from AC includes all the recombination events in AB and BC 
except for those events that occurred in both segments, which then appear to be a non-
recombination as far as AC is concerned.  Thus, recombination between two loci is 
only recognized if an odd number of recombinations occurs!  If we have 2 or 4 
recombinations between A and C, we do not recognize their existence, even though 
they occurred.  We are referring to the number of cross-overs that a particular 
chromatid experiences, so that chromatids that have 0, 2, 4 recombinations between 
two loci appear non-recombinant while those with 1, 3, 5 are recombinant. 

 
The result of this is that the recombination fractions are not additive.  (Consider the case 
where θ12 = 0.30 and θ23 = 0.30.  θ13 cannot be 0.60–as we have previously shown that 
the recombination fraction cannot be more than 0.50.) We need to develop a function 
such that AB + BC = AC. 
 
Mapping functions convert recombination fractions (θ) to map distances (x) that are 
additive.   
 
Map distance is defined as the expected number of crossovers between two loci or one-
half the expected number of chiasma (recombination nodules).   
 

Map distance is measured in Morgans:  1 Morgan = 1 crossover per chomatid.  One 
crossover between two loci is 1/2 crossover per chromatid or 50% recombination or 
0.5 Morgans = 50 cM. 

 
(Note that in the case of Sherman and Stack, they were able to directly estimate 
map distance because they could identify every crossover as a RN.)   

 
When we observe segregating progeny, we cannot observe cross-overs, and double 
recombinations will only appear if we have many markers very close together so that 
double recombinations between any two contiguous markers are not possible. 

 
As the distance between markers becomes greater, the probability of an even number of 
recombinations becomes greater as well, and thus, recombination fractions are not 
additive. 
 
Map functions are necessary to convert from recombination fraction to additive map 
distances (Liu, 1998, p. 318-.) 
 
1)  Morgan’s function:  in the absence of multiple crossovers (i.e., complete interference): 
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 , where x is the map distance and θ is the recombination fraction.   x = θ

 
This function also is a close approximation of map distances from recombination 
frequencies of loci that are closely linked. 

 
2)  Haldane’s function:  assumes no interference and that crossovers occur randomly 
(equally likely) at all points along the chromosome.  This expression derives from Trow’s 
formula (above): 

 
which has an inverse of ; if θ = 0.22 (22%), then 

x = 29 cM 

x = − −1
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3)  Kosambi’s function:  (Kosambi, 1944) a commonly used mapping function that 
includes interference considerations, such that interference is strongest closest to a 
recombination but diminishes as the distance increases: 
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Note that the problem is that interference is not even throughout the genome and that 
both positive and negative interference is possible, as shown in Sherman and Stack 
(1995).  
 
4)  Binomial function (Karlin):  this function allows a specified value for the maximum 
number of recombinations, independently distributed, that can occur in a given interval, 
N. 
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REVIEW:  STEPS IN  LINKAGE ANALYSIS AND MAP CONSTRUCTION 
 
1. Test each marker (gene) for segregation distortion–i.e. deviation from expectations. 
 
2. Test marker pairs for evidence of linkage (e.g. with a χ2 test for independence). 
 
3. Calculate the two-point recombination values between markers that show evidence of 

linkage. 
 

a. Derive expected gamete proportions in terms of θ. 
 

b. Derive expected proportions among the progeny in terms of θ based on the 
gametic array 

 
c. Develop a likelihood expression that includes both the observed numbers of 

individuals in each phenotype class and their expectations in terms of θ. 
 

d. Take the natural logarithm of the likelihood equation to make solving for θ 
easier–this is called the support. 

 
e. Solve for the maximum likelihood estimator (MLE) of θ by differentiating the log 

likelihood equation (which give the scores) and equating to 0. 
 
 f. Calculate a standard error of the MLE.  First calculate the information by taking 

the  second derivative of the lnL equation.  The square root of the inverse of the 
information is the SE. 

 
4. Calculate a LOD score for each pair of markers for which you estimated θ. 
 
5. Group markers into linkage groups based on θ and LOD–starting with θ<0.4 and 

LOD>3.0 and iterating until clear groups have been developed. 
 
6. Determine the best order of markers in the group using maximum likelihood. 
 
7. Develop a multipoint genetic map by genetic reconstruction–that is, use data from 

adjacent markers (via an EM algorithm, for example) to calculate a new, better value 
for recombination between each locus. 

 
8. Convert recombination fractions into map distances using some type of map function 

(e.g. Kosambi or Haldane) 
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REVIEW:  EXPECTATIONS OF GAMETES AND PROGENY PHENOTYPES 
 
Gametes from AaBb heterozygote (= backcross progeny phenotype classes). 

 Gamete Frequencies  

 AB Ab aB ab Total 

No linkage ¼ ¼ ¼ ¼ 1 

Complete linkage, coupling ½ 0 0 ½ 1 

Complete linkage, repulsion 0 ½ ½ 0 1 

Recombination θ, coupling ½ (1-θ) ½ θ ½θ ½ (1-θ) 1 

Recombination θ, repulsion ½ θ ½ (1-θ) ½ (1-θ) ½ θ 1 
 
 
Progeny classes in an F2 (AaBb x AaBb) can be determined by multiplying out from 
above (see next table): 

Coupling  Male Gametes 

  AB Ab aB ab 

AB AB*AB AB*Ab AB*aB AB*ab 

Ab etc.    

aB   
½ θ * ½θ =  
¼ θ2 

½ θ * ½ (1-θ) = 
¼ θ (1-θ) 

Female 
Gametes ab   

½ θ * ½ (1-θ) = 
¼ θ (1-θ) 

½ (1-θ) * ½ (1-θ) 
= ¼ (1-θ)2 

From the above Punnett square, we can derive progeny frequencies: 
 
 a. For example, aabb can only arise through joining male ‘ab’ and female ‘ab’ :  ½ 

(1-θ) * ½ (1-θ)= ¼ (1-θ)2 
 
 b. but aaB- can arise three ways:  male ‘aB’ and female ‘aB’; male ‘aB’ and female 

‘ab’; or male ‘ab’ and female ‘aB’.  Thus, the expectations of aaB- progeny is the 
sum of these:  ¼ θ2 + 2[¼θ(1-θ)] = ¼ θ(2-θ) 
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These are included in the table below: 
 

 Progeny Frequencies in F2  

 A-B- A-bb aaB- aabb Total 

No linkage 9/16 3/16 3/16 1/16 1 

Complete linkage, coupling ¾ 0 0 ¼ 1 

Complete linkage, repulsion ½  ¼  ¼  0 1 

Recombination θ, coupling ¼ (3-2θ+θ2) ¼ (θ2-)θ ¼ (θ2-θ) ¼ (1-θ)2 1 

Recombination θ, repulsion ¼ (2+θ)2 ¼ (1-θ)2 ¼ (1-θ)2 ¼ θ2 1 
 
For the coupling example: 

 Progeny Frequencies in F2  

 A-B- A-bb aaB- aabb Total 

Observed numbers 187 35 37 31 290 

Expected frequencies ¼ (3-2θ+θ 2) ¼ θ (2-θ) ¼ θ (2-θ) ¼ (1-θ)2 1 
The ln-likelihood expression: 
 
 ln L = Constant + 187 ln (¼ (3-2θ+θ2) + (35+37) ln (¼θ (2-θ)) + 31 ln (¼ (1-)θ2) 
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 Solve for θ (lots of math) 
 
 θ = 0.3047 
 
 
 
 
 
     
 


