LINKAGE DETECTION

Suppose we have two genes, A and B, both segregating in our population.

I. Inspection method for linkage detection

A & B each segregates 3:1:

	<u>Phenotypes in F₂</u>			
	AB	Ab	aB	ab
Recombination value	<u>(a)</u>	<u>(b)</u>	<u>(c)</u>	<u>(d)</u>
0%, Repulsion (R)	2	1	1	0
0%, Coupling (C)	3	0	0	1
50%, C or R (independance)	9	3	3	1

 $\frac{\text{ad}}{\text{bc}}$ quick test: \rightarrow independence = 1; repulsion linkage < 1; coupling linkage > 1.

II. Precise methods of detecting linkage

- A. Separating χ^2 into its components based on goodness of fit: Used only if mode of inheritance is known.
 - a. Calculate a χ^2 for goodness of fit to the two gene model with no linkage or segregation distortion.
 - b. Do a χ^2 goodness of fit to the expected ratio for the first gene/character pair (e.g. "A, a")
 - c. Repeat for second character pair (e.g. "B, b")
 - d. Calculate a χ^2 for the linkage component

Example: F₂ data for *cr* (crinkly dwarf) vs. *ms* (male sterile) *cr-ms* x Normal

a = 181, b = 33, c = 35, d = 30; N = 279

Quick test: $(181 \times 30)/(33 \times 35) = 4.7$ (coupling linkage as > 1)

We know from the cross that the linkage is coupling.

χ^2 test

Overall segregation Ho = 9:3:3:1	Class Cr-Ms- Cr-msms crcrMs-	Observed 181 33 35 30	Expected 156.9 52.3 52.3 17.4	(Deviation) ² 579.00 372.97 299.29 157.82	$\frac{\chi^2}{3.69}$ 7.13 5.72 9.07
				χ ² 3df, 0.0	$\overline{25.61}$ **

So, we clearly have deviation in observed ratio from the expected segregation of 9:3:3:1. Is the deviation due to Cr, Ms, or linkage between Cr and Ms?

~				i (iui iui cacii)
Ur-	214	209.25	22.56	0.108
erer	65	69.75	22.56	<u>0.326</u> 0.434,ns
Ms- nsms	216 63	209.25 69.75	45.56 45.56	0.218 <u>0.653</u>
	As- nsms	As- 216 nsms 63	Als- 216 209.25 nsms 63 69.75	Als- Ms- 63 63 100 111 100 111 100 111 100 111 100 111 100 111 100 111 100 111 100

Linkage segregation:

The difference: Overall seg - Cr - Ms = Linkage 25.61 - 0.434 - 0.871 = 24.305**, χ^2 , 1df, 0.01 = 6.63

Test for independance:

- Usable for cases where genetic hypothesis is known or where one isn't.
- Also useful in cases where the data are distorted in some way.
- Basically, the observed *ratio* of one character is used to calculate the expected numbers in each class of the other character.
- Calculation of the χ^2 based on the observed numbers and these calculated expectations will give an indication of the strength of association or possibly linkage.

	<u>Cr</u>	<u>cr</u>	marginal totals	Ratio Ms:ms
Ms ms	a=181 b=33	c=35 d=30	216 63	216/279 = 0.774 63/279 = 0.226
marginal totals	214	65	279	
Ratio Cr:cr	214/279 0.767	65/279 0.233		

Set up a multiple-entry table (contingency table) as follows:

Now, if Cr and Ms are independent, then the ratio of Ms:ms will be the same in each class of Cr (i.e., Cr and cr). Similarly, the ratio of Cr:cr will be the same in each class of Ms.

So: Calculate the expected values of a, b, c, and d based on the ratio of Ms:ms Exp. a = (214) * 0.774 = 165.64 (alternatively (216*214)/279) Exp. b = (214) * 0.226 = 48.36 Exp. c = (65) * 0.774 = 50.31 Exp. d = (65) * 0.226 = 14.69

In all cases, the squared deviation is 234.369. Thus, the χ^2 of each class is

- a = 1.42
- b = 4.85
- c = 4.66
- d = 15.96

for a total χ^2 =26.89, again highly significant at p<0.01, indicating that linkage is possibly present.

- Further experimentation is needed to make sure that there is linkage and that the association is not due to other factors.
- This method does not consider the individual genes-because we may not know how they segregate.

Short method for 2 x 2 tables:

$$\chi^{2} = \frac{(ad - bc)^{2}N}{(a+c)(b+d)(a+b)(c+d)}$$

Denominator terms are marginal totals. Thus, in our example:

$$\chi^{2} = \frac{((181^{*}30) - (33^{*}35))^{2} \cdot 279}{214 \cdot 216 \cdot 63 \cdot 65} = 26.94$$

- Compare this value with one in the above.
- This test can be used anytime.
- A multiple entry table can be constructed, whether or not the mode of inheritance is known.