LINKAGE DETECTION

Suppose we have two genes, A and B , both segregating in our population.

I. Inspection method for linkage detection

A \& B each segregates 3:1:

	Phenotypes in F_{2}			
	AB	Ab	aB	ab
Recombination value	$\frac{\text { (a) }}{2}$	$\frac{(\mathrm{~b})}{1}$	$\frac{(\mathrm{c})}{}$	$\frac{\text { (d) }}{}$
0%, Repulsion (R)	2	1	1	0
0%, Coupling (C)	3	0	0	1
50%, C or R (independance)	9	3	3	1

II. Precise methods of detecting linkage

A. Separating χ^{2} into its components based on goodness of fit:

Used only if mode of inheritance is known.
a. Calculate a χ^{2} for goodness of fit to the two gene model with no linkage or segregation distortion.
b. Do a χ^{2} goodness of fit to the expected ratio for the first gene/character pair (e.g. "A, a")
c. Repeat for second character pair (e.g. "B, b")
d. Calculate a χ^{2} for the linkage component

Example: F_{2} data for cr (crinkly dwarf) vs. $m s$ (male sterile) cr-ms x Normal

$$
a=181, b=33, c=35, d=30 ; N=279
$$

Quick test: $(181 \times 30) /(33 \times 35)=4.7($ coupling linkage as $>1)$

We know from the cross that the linkage is coupling.

χ^{2} test

Overall segregation	Class	Observed	Expected	$\left(\right.$ Deviation 2	χ^{2}
Но = 9:3:3:1	Cr-Ms-	181	156.9	579.00	3.69
	Cr-msms	33	52.3	372.97	7.13
	crcrMs-	35	52.3	299.29	5.72
	crcrmsms	30	17.4	157.82	9.07
					25.61**
				$\chi^{2} 3 \mathrm{df}, 0$.	11.3

So, we clearly have deviation in observed ratio from the expected segregation of 9:3:3:1. Is the deviation due to Cr, Ms, or linkage between Cr and Ms ?

Cr-cr seg.:	Class	Observed	Expected	(Deviation) 2	P^{2} (1df for each)
	Cr-	214	209.25	22.56	0.108
	crcr	65	69.75	22.56	$\underline{0.326}$
					$0.434, \mathrm{~ns}$
Ms-ms seg.:	Msmsms	216	209.25	45.56	0.218
		63	69.75	45.56	$\underline{0.653}$
					0.871, ns

Linkage segregation:

The difference: Overall seg - $\mathrm{Cr}-\mathrm{Ms}=$ Linkage

$$
25.61-0.434-0.871=24.305^{* *}, \chi^{2}, 1 \mathrm{df}, 0.01=6.63
$$

Test for independance:

- Usable for cases where genetic hypothesis is known or where one isn't.
- Also useful in cases where the data are distorted in some way.
- Basically, the observed ratio of one character is used to calculate the expected numbers in each class of the other character.
- Calculation of the χ^{2} based on the observed numbers and these calculated expectations will give an indication of the strength of association or possibly linkage.

Set up a multiple-entry table (contingency table) as follows:

	$\underline{\mathrm{Cr}}$	$\underline{\mathrm{cr}}$	$\underline{\text { marginal totals }}$		$\underline{\text { Ratio Ms:ms }}$
	$\mathrm{a}=181$	$\mathrm{c}=35$	216		$216 / 279=0.774$
Ms	$\mathrm{b}=33$	$\mathrm{~d}=30$	63	$63 / 279=0.226$	
ms				279	
marginal totals	214	65			
Ratio Cr:cr	$214 / 279$	$65 / 279$			
	0.767	0.233			

Now, if Cr and Ms are independent, then the ratio of Ms:ms will be the same in each class of Cr (i.e., Cr and cr). Similarly, the ratio of Cr :cr will be the same in each class of Ms.

So: Calculate the expected values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d based on the ratio of Ms:ms
Exp. $\mathrm{a}=(214) * 0.774=165.64$ (alternatively $(216 * 214) / 279)$
Exp. $\mathrm{b}=(214) * 0.226=48.36$
Exp. $\mathrm{c}=(65) * 0.774=50.31$
Exp. $\mathrm{d}=(65) * 0.226=14.69$
In all cases, the squared deviation is 234.369 . Thus, the χ^{2} of each class is
$\mathrm{a}=1.42$
$\mathrm{b}=4.85$
$\mathrm{c}=4.66$
$d=15.96$
for a total $\chi^{2}=26.89$, again highly significant at $\mathrm{p}<0.01$, indicating that linkage is possibly present.

- Further experimentation is needed to make sure that there is linkage and that the association is not due to other factors.
- This method does not consider the individual genes-because we may not know how they segregate.

Short method for 2×2 tables:

$$
\chi^{2}=\frac{(a d-b c)^{2} N}{(a+c)(b+d)(a+b)(c+d)}
$$

Denominator terms are marginal totals. Thus, in our example:

$$
\chi^{2}=\frac{((181 * 30)-(33 * 35))^{2} * 279}{214 * 216 * 63 * 65}=26.94
$$

- Compare this value with one in the above.
- This test can be used anytime.
- A multiple entry table can be constructed, whether or not the mode of inheritance is known.

