photosynthesis

Photosynthesis in sorghum under non-stress, cold and drought stress

licorCarbon assimilation through photosynthesis is the basis of crop productivity. However, increases in crop yield achieved in the last 50 years have not been attributed to changes in photosynthetic capacity. The complex genetic architecture of C assimilation and the lack of correlation between grain yield and photosynthesis were the most important arguments to postpone significant investments in this scientific area.

Mauricio D Tejera
Graduate Assistant-Research
Dr. Maria G Salas-Fernandez
Associate Professor

Sorghum (Sorghum bicolor L. Moench) is a C4 species sensitive to the cold spring conditions that occur at northern latitudes, especially when coupled with excessive light, and that greatly affect the photosynthetic rate. The objective of this study was to discover genes/genomic regions that control the capacity to cope with excessive energy under low temperature conditions during the vegetative growth period. A genome-wide association study (GWAS) was conducted for seven photosynthetic gas exchange and chlorophyll fluorescence traits under three consecutive temperature treatments: control (28 °C/24 °C), cold (15 °C/15 °C), and recovery (28 °C/24 °C). Cold stress significantly reduced the rate of photosynthetic CO2 uptake of sorghum plants, and a total of 143 unique genomic regions were discovered associated with at least one trait in a particular treatment or with derived variables.

Subscribe to RSS - photosynthesis